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a  b  s  t  r  a  c  t

This  study  proposes  an  intelligent  PEV  charging  scheme  that  significantly  reduces  power  system  cost
while  maintaining  reliability  compared  to the widely  discussed  valley-fill  method  of  aggregated  charging
in the  early  morning.  This  study  considers  optimal  PEV  integration  into  the New  York  Independent  System
Operator’s  (NYISO)  day-ahead  and  real-time  wholesale  energy  markets  for 21  days  in June,  July,  and
August of  2006,  a record-setting  summer  for peak  load.  NYISO  market  and  load  data  is  used  to develop
a  statistical  Locational  Marginal  Price  (LMP)  and  wholesale  energy  cost model.  This  model  considers  the
high  cost  of  ramping  generators  at peak-load  and  the  traditional  cost  of  steady-state  operation,  resulting
in  a  framework  with  two competing  cost objectives.  Results  show  that intelligent  charging  assigns  roughly
80%  of  PEV  load  to valley  hours  to  take  advantage  of low  steady-state  cost,  while  placing  the remaining
20%  equally  at shoulder  and  peak  hours  to  reduce  ramping  cost.  Compared  to  unregulated  PEV  charging,
intelligent  charging  reduces  system  cost  by  5–16%;  a 4–9%  improvement  over  the  flat  valley-fill  approach.
Moreover,  a Charge  Flexibility  Constraint  (CFC),  independent  of  market  modeling,  is  constructed  from  a

vehicle-at-home  profile  and  the  mixture  of Level  1  and  Level  2  charging  infrastructure.  The  CFC  is found
to severely  restrict  the ability  to charge  vehicles  during  the morning  load  valley.  This  study  further  shows
that adding  more  Level  2 chargers  without  regulating  PEV  charging  will  significantly  increase  wholesale
energy  cost.  Utilizing  the proposed  intelligent  PEV  charging  method,  there  is a noticeable  reduction  in
system  cost  if the  penetration  of  Level  2 chargers  is increased  from  70/30  to  50/50  (Level 1/Level  2).
However,  the  system  benefit  is drastically  diminished  for  higher  penetrations  of  Level  2  chargers.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

There is an increasing need for flexible loads that can respond to
conomic and reliability signals from energy providers to decrease
nergy cost and enhance the security of the grid [1,2]. This dis-
atchable demand – much like generation – can be monitored and
ontrolled by energy aggregators, such as ISOs/RTOs and utilities, to
aintain generation and load balance via load scheduling, shifting,

urtailing and provision of ancillary services [3,4]. Load services
an lower Locational Marginal Prices (LMPs), ease incorporation
f intermittent renewable energy, and lower pollutant emissions
rom generators such as CO2, NOx, and SO2 [2,5]. Since a majority
f the capital costs of acquiring flexible loads are covered by the
ustomer for their primary functionalities (e.g. electric vehicles for
ransportation), energy aggregators will be tasked to provide the

emaining monitor and control technology to network individual
ustomers and energy providers.

∗ Corresponding author.
E-mail address: kz33@cornell.edu (K.M. Zhang).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.08.076
The charging of lithium-ion batteries in Plug-in Electric Vehicles
(PEVs) is one type of dispatchable load that has significant potential
to provide many types of power system services without causing
customer discomfort [3]. The control of PEV charging will most
likely involve discontinuous and/or variable charging of individual
vehicles, which studies show does not cause battery degradation
[6,7]. As 85% of commuters in the U.S. drive 40 miles or less every
day, the charging need for a typical PEV-40 (40-mile electric range)
ranges from 10 kWh  for a compact sedan to 18.4 kWh  for a full-size
sports utility vehicle (SUV) [8]. In this study, Level 1 chargers deliver
1.44 kW and Level 2 chargers deliver 7.68 kW in a typical household
[9]. Level 2 chargers with higher power ratings are not analyzed as it
may  cause current batteries and distribution transformers to over-
heat during vehicle charging. Furthermore, PEVs will most likely be
charged at owner’s homes, at least in the short-term [10]. Consen-
sus shows that unregulated charging of PEVs – allowing commuters
to charge after work in the evening – will increase peak-load and
LMP, while decreasing system reliability [10–12].  To prevent these

undesirable consequences current literature suggests several regu-
lated charging solutions, most notably the valley-fill scheme, where
all charging takes place during the early morning, when system
power demand is lowest [11,13].

dx.doi.org/10.1016/j.jpowsour.2011.08.076
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:kz33@cornell.edu
dx.doi.org/10.1016/j.jpowsour.2011.08.076
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Table 1
Summary of PEV charging methods.

Charging method Description

Unregulated Charging begins immediately after a commuter returns
home from work, incurring the highest cost.

Flat valley-fill Charging is regulated to take place when system
demand is lowest, incurring the lowest steady-state
cost.

Smooth valley-fill A valley-fill variation with minor smoothing at the
endpoints of the valley to reduce ramping cost.

Intelligent Charging can be dispatched whenever commuters are
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6 PM with peak about 15 times the valley. The unregulated charg-
ing profile is phased approximately 1–2 h ahead of the CHP. This
is because the CHP is the number of commuters at home, not the
number of commuters arriving home. Consequently, many of the
at home to minimize total system cost from
steady-state and ramping operation.

This study examines the maximum aggregated potential of PEV
oad to minimize a two-settlement wholesale energy market cost
system cost) and investigates the associated optimal scheduling
f dispatchable PEV load in the New York Control Area (NYCA) –
he power system in New York State. The New York Independent
ystem Operator (NYISO) oversees NYCA along with parts of the
anadian system. NYCA interconnects PJM, New England, Ontario
nd Hydro Quebec. NYCA has a Total Resource Requirement of
early 39,000 MW with 63% of capacity from gas and oil units, 14%

rom nuclear, 11% from hydro and 7% from coal.
This study considers zero capital, operation, and maintenance

ost for PEV load services so as to determine the system value of
ontrolling PEV charging.

. Electric vehicle load and traditional charging methods

Understanding the impact of electric vehicle charging on the
ower system requires characterizing both the number of vehicles
nd the time-dependant charging distribution. In this study, elec-
ric vehicle energy demand is characterized from US Census data,
nd two well known charging patterns – unregulated charging and
alley-filling – are discussed. Table 1 presents a summary of all
harging strategies outlined in the following sections (intelligent
harging is discussed in Section 5).

.1. Energy requirement modeling

Prior to investigating different PEV charging schedules, the total
nergy requirement of vehicle fleet must be determined. PEV charg-
ng in New York State is studied. The total number of vehicles within
he state, approximated as the total number of commuters who
rive to their place of work, is 4.6 million. This study obtained com-
uter data from the 2000 Census [14]. Once the number of vehicles

s known, various PEV market penetration percentages are applied
o obtain the number of PEVs on the road for a penetration level.

This study partitions the NYCA into 19 load centers detailed in
he 36-bus Northeast Power Coordinating Council (NPCC) power
ystem reduction model [15]. Population density data from the
000 Census were used to apply “center city”, “suburban”, and
rural” labels to each of the 19 load centers in NYCA. To obtain the
otal PEV energy requirement in New York, the number of vehicles
s multiplied by a distance driven daily, and any distance that is less
han or equal to 40 miles is in turn translated to a PEV charge energy
equirement. Liquid fuel is assumed to power PEVs above the 40
iles mark. Driving distances were computed using US Department

f Energy data, specifying the average distance driven in “rural”,
suburban”, and “center city” regions. The average distances are
9.4 km (or 36.9 miles), 46.3 km (or 28.8 miles) and 43.8 km (or

7.2 miles), respectively [16].

For each load center, a weighted average rate derived
rom 0.16 kWh  km−1 (or 0.25 kWh  mile−1) for compact sedans
o 0.29 kWh  km−1 (or 0.46 kWh  mile−1) for SUVs is applied to
urces 196 (2011) 10717– 10726

convert miles driven to energy usage [8].  Eq. (1) describes the
required energy.

Daily PEV energy =
19∑

i=1

MPEVNiDiEi (1)

where MPEV is the PEV market penetration and Ni, Di, Ei are the num-
ber of commuting vehicles, average daily distance driven and the
average electric energy used per mile at load center i, respectively.
In terms of energy contribution, 5%, 10%, 20%, and 40% penetrations
of PEVs charging between the valley-load hours of 3 AM to 6 AM
is on average 2.6%, 5.3%, 10.6%, 21.1% of summertime electricity
consumption during the same time frame.

2.2. Unregulated charging model

Unregulated charging refers to a method that charges the PEVs
as soon as the commuter arrives home, and finishes charging when
the battery becomes full or when the commuter leaves home. This
type of charging scheme tends to exacerbate peak load and LMP.

The power consumption model for unregulated charging is
largely the same as that in [12]. In summary, the charging scheme
assumes that commuters start their commute from home with a
fully charged battery. The time-varying electricity demand from
PEVs is simulated using the number of commuters, PEV market
penetrations, the times when commuters leave work, the speeds at
which they travel, the daily commuting distances and the charger
power ratings (Level 1 or Level 2). These input parameters were
synthesized from the Regional Travel Household Interview Sur-
vey (RTHIS) and the 2000 Census Transportation Planning Package
(CTPP).

In addition to these parameters, a traffic congestion factor
known as Travel Time Index (TTI) of 1.15 is used in the Monte
Carlo simulation of a thousand commuters to create a normalized
commuter-at-home profile (CHP) and an unregulated charging pro-
file [17–19].  The simulation provides a realistic sample of a variety
of commuter transportation patterns that include different battery
recharge requirements, home arrival and departure times. The CHP
and unregulated charging profile is shown in Fig. 1.

The normalized CHP has a sinusoidal shape whose valley is at
7:30 AM and peak at 7 PM,  with peak approximately 7 times the
valley. The normalized unregulated charging profile has a more
skewed sinusoidal shape whose valley is at 6:30 AM and peak at
Fig. 1. Normalized Charging Flexibility Constraint (CFC) and unregulated PEV charg-
ing  profile.
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Daily total system cost ≈ LMPDAM(PDAM, |�PDAM|) × Psys,DAM
ig. 2. Base case load profile with unregulated, smooth and flat valley-fill charging
chemes for 40% PEV penetration.

ommuters that arrive home before 7 PM have finished charging
heir PEV batteries by 7 PM.  A similar phenomenon occurs in the

orning.

.3. Valley-fill charging model

Valley-filling is an approach that intuitively allocates all of PEVs’
equired charge at valley-load hours. This approach only charges
EVs at lowest steady-state loads and LMPs. The traditional valley-
ll approach allocates PEV charge such that certain hours of the
alley achieve a flat load. There are several variations on this basic
pproach, including minor smoothing for generator ramping reduc-
ion (see Section 3). Examples of previously analyzed PEV charging
chemes are depicted in Fig. 2.

. Wholesale energy market model

The New York Independent System Operator (NYISO) oper-
tes on a two-settlement energy market: day-ahead and real-time.
raditionally, Locational Marginal Prices (LMPs) and wholesale
nergy cost are determined from the unit commitment of gener-
tors in the day-ahead market (DAM) and economic dispatch in
he real-time market (RTM), while observing security constraints
nd emissions permits [20]. As generator offer curves, transmis-
ion network topology, network security constraints, and generator
mission profiles are proprietary, this study develops an alterna-
ive statistical approach for assessing market cost for the entire
YCA using historical market and operation data. Consequently, the
odel approximates the LMP  and system cost changes due to PEV

enetrations in the NYCA without explicitly employing the tech-
iques of unit commitment and economic dispatch. Principally, the
odel incorporates the entire generation fleet in the NYCA; there-

ore it does not couple PEV charging to a specific generator [4].  As
 result, the dispatch of PEV charging provides direct benefit to the
ntire power system in NYCA.

This model expands the traditional steady-state dispatch model
o explicitly include the system cost of ramping generators. The
raditional steady-state cost model depends on the load at a dis-
atch time, and is constrained only by physical generator ramp
ates without explicit cost assignment. However, it is evident that
enerators incur higher cost (maintenance and fuel consumption)
hen rapidly changing their set-points to match load changes [21].
his additional cost is the ramping cost. It is likely that this cost will
ecome more significant as the power system incorporates a larger
hare of intermittent generation [22].
urces 196 (2011) 10717– 10726 10719

3.1. Power system data

The NYISO provides an extensive archive of historical day-ahead
and real-time load and LMP  data. As the highest system loads occur
in the summertime, this study considers only the summer months
from June to August in order to characterize the maximum system
benefit of intelligent PEV charging. The data used for this study
consists of 21 days from the summer of 2006: June 19–25, July 9–15,
and August 13–19. The year 2006 was chosen for its record-setting
summer peak loads. These 21 days were also selected to provide
a thorough characterization of the time-varying nature of summer
loads and LMPs.

3.2. System cost

The system cost for the energy market is formulated as the sum
of the DAM cost and cost of dispatch adjustment from the RTM,
where cost is the product of LMP  and load served by generators.
This relationship is given in Eq. (2).

Daily total system cost =
T1∑

t=0

LMPDAM,t(PDAM,t |�PDAM,t |) × PDAM,t

+
T2∑

t=0

LMPRTM,t(PRTM,t, |�PRMT,t |) × (PRMT,t − PDAM,t) (2)

where the subscripts DAM and RTM refer to the day-ahead and
real-time markets, respectively. LMP  at time t is a function of
steady-state load, P, and modulus of load difference, |�P| (assum-
ing a symmetric ramping cost). T1 is the 23rd hour in the DAM  and
T2 is the 143rd 10-min period in the RTM. The first summation in
Eq. (2) is DAM cost and the second summation is the cost of RTM
adjustment to DAM.

3.3. LMP model

This study incorporates a statistical LMP  model for NYCA with
PEV charge allocation affecting the LMP. The model uses base case
LMPs from the 2006 summer to establish a 0% PEV penetration base
case.

3.3.1. Cost model: inter-day
To capture the LMP  trend of the summer season from the 21

selected days and to ensure accuracy from the use of Taylor Series
expansion around the base case loads and LMPs, weighted aver-
age values of base case load, modulus of ramp and LMP  were used
to construct an approximate model for the daily system cost. This
averaging method also preserves the sensitivity of system cost due
to load changes while dampening the instability of real-time prices
(see Section 3.3.2.).

Eq. (3) shows the averaging process, while Eq. (4) re-expresses
Eq. (2) in terms of averaged variables.

∑

t ∈ T

LMPt(Pt, |�Pt |) × Pt ≈ LMP(P̄, |�P|) × P̄sys (3)

where weighted averaging is indicated by the accent bar and P̄sys

is the equivalent average system load at time t (see Section 3.3.2.).

¯ ¯
+ LMPRTM(P̄RTM, |�PRTM|) × (P̄sys,RTM − P̄sys,DAM) (4)
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Table 2
Comparison of the average LMP  model used to the Simple Regression Model and MATPOWER.

LMP ratio New York state Northeast Power Coordinating Council

Simple Regression Model Avg. LMP  model MATPOWER Avg. LMP  model
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Unregulated/base case 1.071 

Valley-fill/base case 1.027 

Unregulated/valley-fill 1.043 

Taylor series expansion of the average LMP  function around the
ase case results in Eq. (5):

PM(P̄, |�P|) ≈ a0 + a1P̄ + a2P̄2 + a3P̄|�P| + a4|�P| + a5|�P|2 (5)

here ai is a constant.
Principle component analysis was performed to assess the mag-

itude of the terms in Eq. (5),  showing negligible |�P| and |�P|2
ontribution. The final form of the average LMP  equation is given
n Eq. (6):

PM(P̄, |�P| ≈ a0 + a1P̄ + a2P̄2 + a3P̄|�P|) (6)

Eq. (6) statistically demonstrates that average NYCA LMP can
e approximated by a quadratic function of average load, P̄,  with a
amping term, P̄|�P|. The constants in this expression were deter-
ined from least-squares regression of NYISO DAM and RTM LMP

nd load data for the 21 summer days.
Physically, Eq. (6) shows that system ramping is more costly at

eak-load than at valley-load due to the use of expensive peaking
nits.

.3.2. Weighted average load: intra-day
Within a given day, the model must reflect the high cost of

dding load at peak. Therefore, the average system load is a
eighted average of three load regions: peak, shoulder and val-

ey. Peak and valley-load hours account for approximately 12 h in
ach day, so the sum of the peak-load weight (Wp) and the valley-
oad weight (Wv) adds up to ½. Cp and Cv are user-defined tuning
actors that allow adjustment of the average LMP  model to match

arket data. Thus,

pWp + CvWv = 1
2

(7)

Letting R = Wp/Wv and S = cp/cv,

pWp = RS

2(1 + RS)
and CvWv = 1

2(1 + RS)
(8)

In model implementation, R is calculated from the ratio of peak-
oad to valley-load and S is defined in the interval [1/R ≤ S ≤ 3/R]. For
xample, a value of S = 1/R  results in CpWp = CvWv = 1/4: the non-
eighted average load. A value of S = 1 was chosen for the average

MP model to approximate the NYCA load and LMP  data. It is worth
oting that S can be adjusted to better fit data from other control
reas.

Finally, the weighted-average load is obtained from Eq. (9):

¯ =
I1∑

i=1

CpWpPp,i +
I2∑

i=1

CvWvPv,i +
12∑

i=1

1
2

Ps,i (9)

here P is load from data, s is shoulder-load region, and I1 + I2 = 12.
The equivalent system load, P̄sys, is a also function of both P̄ and

�P|, as is in the case with LMP.

¯ ¯ ¯
sys = Psys(P, |�P|) (10)

Taylor series is employed to linearize P̄sys, resulting in Eq. (11).

¯ sys ≈ b0 + b1P̄ + b2�P  (11)
.051 1.029 1.022

.982 N/A N/A

.070 N/A N/A

The constants, bi, are determined from fitting the ratio of system
cost of unregulated PEV charge scheme to the base case such that
it approximates the costs from the validation models in Section
3.3.3. For the NYCA, b0 ≈ 0, b1 ≈ 1 and b2 ≈ 1. Consequently the final
expression for P̄sys is given in Eq. (12),

P̄sys ≈ P̄ +  |�P| (12)

It is worth noting that the coefficients in Eqs. (6) and (11) can be
tuned to analyze different scenarios of system ramping on whole-
sale energy cost, such as from incorporating volatile generation.

3.3.3. Model verification and validation
The average LMP  model was  checked for accuracy and stability

across various load and PEV charging patterns. Specifically, four
sample load curves (pictured in Fig. 2) with 40% PEV penetration
were tested: first is a base case without PEV charging, second is
with a flat valley-fill charge, third is with a smoothed valley-fill
charge (which adheres to the charging constraint), and last is with
an unregulated PEV charge profile.

Two reference models were used to validate the performance
of the average LMP  model for these four load curves. The first
reference model is a simple load-only regression model, where a
quadratic curve is regressed to the base case load and LMP  data.

The second reference model uses MATPOWER, a security-
constrained optimal power flow analysis tool, paired with the
36-bus reduced NPCC network, which includes New York, New Eng-
land, and parts of Pennsylvania and Canada [15,23]. MATPOWER
was used to run economic dispatch of 693 generators in the reduced
NPCC network for the base case as well as the unregulated charg-
ing case with PEV load scaled up from the NYCA base case to match
the NPCC base case. Network constraints were disabled to produce
purely economic dispatch prices for comparison with the average
LMP  with ramp model. The valley-fill case was not considered for
economic dispatch, because MATPOWER currently uses a myopic
optimization method that is not suited for non-linear ramp costs
related to the valley-fill method.

Table 2 shows comparative results among the three LMP  models
average for the 21 summer days. The results are tabulated as ratios
of different PEV charging scenarios and the base case. The smooth
valley-fill and the flat valley-fill obtained close results, therefore
only the smooth valley-fill results are shown. For the Simple Regres-
sion Model comparison the PEV market penetration is 40%; for the
MATPOWER model the market penetration is 20%.

Table 2 validates the results of the average LMP  model, showing
variations ranging from 0.7% for the MATPOWER comparison, to
4.4% for the Simple Regression Model comparison. Interestingly,
the average LMP  model has a price ratio less than 1 for the valley-
fill to base case comparison. This is due to additional load from PEV
charging that smoothes the load curve reducing system ramping
cost.

4. Charge Flexibility Constraint
The Charge Flexibility Constraint (CFC) is a function of commuter
driving patterns and the charging infrastructure deployed through-
out the system which limits the power withdraw. In this analysis, it



K. Valentine et al. / Journal of Power So

F
(

i
e
a
l
i

a
t
1
a
s
d

p

C

w
o

e
l
1
C
L

C
c
a
l
d
i
m
c

5

i
m
k
c
o
n
i
t

s
d

ig. 3. Flat valley-fill PEV charging profile overlaid with Charge Flexibility Constraint
CFC) for 70/30, 50/50 and 30/70 (Level 1/Level 2) charging infrastructure.

s assumed that PEV charging only takes place at the vehicle own-
rs’ homes, resulting in the CHP (see Section 2.2). If charging is
llowed to take place at other locations, such as at work, then a
ess restrictive profile describing vehicle idleness would be used
nstead.

The type of charging station available to an individual imposes
n additional limitation on power consumption. There are two
ypes of electric vehicle chargers considered in this study: Level

 chargers are standard 120 V/12 A outlets, capable of delivering
 maximum of 1.44 kW,  while Level 2 chargers considered in this
tudy are rated at 240 V/32 A and can deliver 7.68 kW (see Intro-
uction for rationale) [9].

The aggregate PEV charging constraint for a specified time
eriod, expressed in kilowatts, is given by Eq. (13):

FC(t) ≤ CHP(t)MPEVN[1.44  ̨ + 7.68(1 − ˛)] (13)

here MPEV is the market penetration of PEVs, N is the total number
f vehicle owners, and  ̨ is the fraction of Level 1 vehicle chargers.

The CFC is independent of any wholesale market model, and is
nforced for all PEV charging schemes. Fig. 3 shows that at valley-
oad hours, the maximum charging power decreases sharply from

 AM to 6 AM averaging close to 1 GW h−1. From 6 AM to 8 AM the
FC achieves its minimum at approximately 700 MW for a 70/30
evel 1/Level 2 charger mixture.

Fig. 3 shows that a flat valley-fill charging scheme violates the
FC for a 70/30 charger mix. It is worth noting that the 70/30 ratio
orresponds to an average 3.31 kW power draw for each vehicle,
nd most PEVs on the road today (Chevy Volt and Nissan Leaf) are
imited by the onboard power converter to 3.3 kW.  To accommo-
ate the possibility of a flat valley-fill charging scheme, significant

nfrastructure investment must be made to attain a 30/70 charger
ixture. The system benefit of such an investment is further dis-

ussed in Section 6.4.

. Intelligent PEV charging

Intelligent Charging allows an aggregator to allocate PEV charg-
ng such that overall system steady-state and ramping costs are

inimized in the day-ahead and real-time wholesale energy mar-
ets. Intelligent charging also considers the realistic aggregate
harging constraint imposed by the CFC. This charging scheme can
ccur at any time when commuters are at home, and is therefore
ot limited to valley-load hours. Mathematically, intelligent charg-

ng changes system load profiles and ramping requirements such

hat both P̄ and |�P| change.

Total system cost was determined through a linked two-
tage optimization process, which was solved for each of the 21
ays using Simulated Annealing, a metaheuristic that has been
urces 196 (2011) 10717– 10726 10721

successfully applied to many problems in power systems [24–26].
For each day, the optimization problem is formulated in Eqs.
(14)–(18) for the DAM stage and Eqs. (19)–(21) for the RTM stage.

Day-ahead market stage

min
PEVDAM,t ,PEVRTM,t

{
LPMDAM(P̄DAM, |�PDAM|) × P̄sys,DAM

+E[LPMRTM(P̄RTM, |�PRTM|) × (P̄sys,RTM − P̄sys,DAM)]
}

(14)

s.t.

0 ≤ PEVDAM,t ≤ CFCt ∀t ∈ {0, . . . , T1} (16)

0 ≤ PEVRTM,t ≤ CFCt ∀t ∈ (0,  . . . , T1) (15)

0 ≤
T1∑

t=0

PEVDAM,t ≤
19∑

i=1

MPEVNiDiEi (17)

T1∑

t=0

PEVRTM,t =
19∑

i=1

MPEVNiDiEi (18)

Real-time market stage

min
PEVRTM,t

{
LPMDAM(P̄DAM, |�PDAM|) × P̄sys,DAM

+[LPMRTM(P̄RTM, |�PRTM|) × (P̄sys,RTM − P̄sys,DAM)]
}

(19)

0 ≤ PEVRTM,t ≤ CFCt ∀t ∈ {0, . . . , T2} (20)

T2∑

t=0

PEVRTM,t =
19∑

i=1

MPEVNiDiEi (21)

where for each day, PEVDAM,t and PEVRTM,t are the PEV charging
committed in the day-ahead market (DAM) and dispatched in the
real-time market (RTM), respectively.

The DAM solver uses NYISO day-ahead load forecasts for the
base load, and the unregulated charging case profile as the ini-
tial solution to minimize the energy market cost given a daily PEV
energy requirement. The day-ahead solver has an expectation of
the RTM LMP  based on historical data to evaluate the cost effec-
tiveness of hourly PEV charge allocation in the DAM. Moreover, the
daily PEV energy requirement is an inequality constraint in the
DAM (Eq. (17)), and an equality constraint in the expected RTM
(Eq. (18)). This way  PEVs are guaranteed charging without forcing
day-ahead commitment. At this stage, the PEV charge allocation in
the DAM is binding, and that in the expected RTM is not binding.
The second RTM stage in the optimization algorithm solves for the
actual real-time PEV allocation, in 10-min increments,  given the pre-
determined day-ahead schedule in the first DAM stage. The second
stage uses the same LMP  model, but with coefficients regressed for
the real-time market. The PEV energy requirement is active in this
RTM stage (Eq. (21)).

6. Results and discussion

6.1. Load profiles with intelligently charged PEVs

Fig. 4 shows typical intelligent charging allocations for the 21
summer days tested. Results indicated that charging mostly occurs

during 7 valley-load hours of 1 AM to 8 AM.  However, there is
noticeable charging during peak hours (12 PM to 9 PM), specifically
from 6 PM to 8:30 PM.  Charging during shoulder-load hours is also
observed.
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valley-load dip at 6 AM remains with all four PEV penetrations. Sub-
sequent analysis shows that this dip is due to a base-case load dip
and the 70/30 charging constraint.

Table 4
Average vehicle charging at valley, shoulder, and peak hours for June, July, and
August 2006.

PEV penetration (%) Real-time

Valley
charge (%)

Peak
charge (%)

Shoulder
charge (%)
ig. 4. Day-ahead (DA) and real-time (RT) load profiles with intelligent PEV chargi
b)  10%, (c) 20% and (d) 40%.

.2. Intelligent charging vs. valley-filling

Fundamentally, the intelligent charging model optimizes the
ombined system benefit of charging at periods of low base load
nd charging to reduce system ramping. This principle is clearly
emonstrated in Fig. 4, where the base load ramps down and then
p again by roughly 1 GW over 2.5 h in the late evening, creat-

ng a second load peak. The cost of rapidly changing generator set
oints can be high – $50–$400 per ramp operation depending on
he generator type [27]. Consequently, the system can encourage
EV charging at this time to fill this second valley and smooth the
verall load profile.

While smoothing takes place even at the lowest PEV penetra-
ions, the true utility of this dispatchable load is evident only with a
arger number of vehicles. At 20% PEV penetration, the second peak
s effectively eliminated, and at 40% the peak is further smoothed
o create the familiar concave load shape from 8 AM to 11 PM.

Specifically for July 9th, Table 3 tabulates the relative percent-
ges of energy charged at valley-, shoulder-, and peak-load hours,

here

EV charge percentage = amount of energy charged at period
daily PEV energy requirement

× 100 (22)

able 3
harging at valley, shoulder, and peak hours for July 9th 2006.

PEV penetration (%) Real-time

Valley
charge (%)

Peak
charge (%)

Shoulder
charge (%)

July 9th (70/30 charger mix)
5 77.6 11.6 10.8

10 74.8  15.4 9.8
20  70.3 14.3 15.4
40 55.6  24.0 20.4
 July 9th with a 70/30 (Level 1/Level 2) charger mixture. PEV penetrations: (a) 5%,

Table 3 illustrates that for July 9th, there is significant charging
at peak-load hours averaging from 11.6% for 5% PEV penetra-
tion to 24.0% for 40% PEV penetration. Charging at shoulder is
approximately equal to that at peak-load. Overall, charging at non-
valley-load hours account for about 1/2 of the total daily charge.
Peak-load charging percentage increases across the four PEV pen-
etrations. The corresponding load profiles show that the peak-load
is dramatically smoothed at 40% PEV penetration. Moreover, the
June avg. (70/30 charger mix)
5 79.2 10.5 10.4
10  80.3 10.4 9.3
20  81.0 7.9 11.2
40  73.0 12.6 14.4
Average 78.4 10.3 11.3
July  avg. (70/30 charger mix)
5 77.9 9.8 12.3
10  82.2 7.8 10.0
20  81.7 5.5 12.8
40 73.5  9.9 16.6
Average 78.8 8.3 12.9
August avg. (70/30 charger mix)
5  78.0 11.1 10.9
10  79.4 11.0 9.6
20 78.4  9.8 11.8
40  69.9 13.5 16.6
Average 76.4 11.4 12.2
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 (b) valley-load hours, and (c) shoulder-load hours for July 9th to 15th.
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Fig. 5. Percentage of intelligent charging at: (a) peak-load hours,

Given the 70/30 ratio of Level 1/Level 2 chargers, average charg-
ng percentages for all four PEV penetrations has similar average
rends for the three months. Namely, 76.4–78.8% of charging is done
t valley-load hours, 8.3–11.4% at peak-load hours and 11.3–12.9%
t load shoulder-load hours.

Table 4 tabulates the average charging percentages for the
onth of June, July and August. On average, charging at valley-load

ours is 3.5 times charging at non-valley-load hours. For all three
onths there is decreased average marginal incentive to charge

t valley-load hours at 40% PEV penetration compared to lesser
enetrations. In an optimal charging scenario, there are compet-

ng incentives for scheduling at both valley and non-valley hours:
uring valley hours the steady-state cost of energy is low, however
here is less benefit in terms of ramping reduction due to the P̄|�P|
erm in Eq. (6);  conversely at non-valley hours, there is a larger
enefit to ramping reduction, but it is offset by higher steady-state
ost.

While the exact charging percentages vary from day to day, the
eneral trend for charging at valley- and shoulder-load hours for the
our PEV penetrations is clear. At low to medium PEV penetrations
5–10%), the marginal benefit of increasing charge at valley-load
ours to take advantage of low steady-state base case load is higher
han the marginal benefit of charging at non-valley-load hours to
ower system ramping cost. The marginal benefit of charging at
alley and non-valley hours is balanced at a medium to high PEV
enetrations (10–20%). At high PEV penetrations (20–40%) there

s decreased marginal economic incentive to charge at valley-load
ours as the valley becomes smooth. Conversely, there is increased
arginal incentive to reduce high system ramping costs at non-

alley-load hours. This motivation is illustrated in Fig. 5.
Fig. 5 illustrates that (with the exception of July 9th) there is

 benefit to charging at valley-load hours for low to medium PEV
enetrations. However at high PEV penetration, there is not a clear
rend for charging at peak. A close inspection of the load profiles
hows that different days (e.g. July 14th and 15th) have drastically
ifferent base case peak-loads. July 14th is a day where load at
eak follow a smooth sinusoidal profile, requiring little PEV charge
llocation for system ramp smoothing. However, July 15th has sig-
ificant peak-load “dips”, requiring PEV allocation at peak-load
ours to decrease system ramping cost. Consequently, different
ase case load shapes are the primary cause for the lack of a clear
rend for high penetration PEV charge allocation at peak-load hours.
The intelligent charging results from the 21 days are categorized
s: maximum charging at peak-load hours, maximum charging at
alley-load hours, and typical charging. In Fig. 6, July 9th is one of
he maximum peak charging scenarios. System cost reductions due
Fig. 6. Wholesale energy cost reductions due to intelligent and valley-fill PEV
charging with 70/30 (Level 1/Level 2) charger mixture for three charging results:
maximum charging at peak, at valley and typical charging.

to intelligent PEV charging and a flat valley-fill approach is based
off unregulated charging, which will occur without retail electricity
price penalties, grid reliability constraints or instituted policy.

Fig. 6 demonstrates that an intelligently charged PEV fleet that is
charged mostly at valley-load, with some charging at shoulder and
peak-load, reduces system cost from 5% at 5% PEV penetration to
17% at 40% PEV penetration. In comparison, a flat valley-fill charg-
ing scheme reduces system cost 1–8%; 4–9% less than intelligent
charging.

6.3. Impact of the Charge Flexibility Constraint

Independent of cost modeling, the Charge Flexibility Constraint
(CFC) has a significant impact on the dispatch of PEV charging
demand, particularly in the morning load valley period. Installing
50% Level 2 chargers relaxes this constraint; however the system
benefit of adding these high power charging stations diminished
rapidly.

Fig. 7 shows that charging at valley hours from 2 AM to 6 AM
increases as more Level 2 chargers are used. This trend is demon-
strated with Level 2 charger percentages from 30%, to 50 to 70%.
The CFC for the 70/30 (Level 1/Level 2) charger mix  prohibits any

additional PEV charging between hours 2 AM to 6 AM. This con-
straint prohibits a flat valley-fill. The CFC is greatly alleviated with
a 50/50 charger mix, and the valley-load becomes flatter. With a
significant Level 2 charger investment resulting in a 30/70 charger
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ig. 7. Effect of the Charge Flexibility Constraint (CFC) on the intelligent charging o
0/70.

ix, the charging constraint is mostly eliminated, except from 5 AM
o 6 AM.  This allocation reduces ramping cost at valley-load while
aking advantage of the low steady-state load and price at those
ours.

The slight valley-load dip from 2 AM to 5 AM is never completely
liminated. An inspection of the CFC indicates that the constraint
s inactive between these hours. Instead the cause of such a slight
ip is economic. Instead of completely smoothing valley-load, PEV

s marginally allocated at the peak-load hours of 7 PM and 8 PM,
nd shoulder-load hours of 10:30 PM to 11 PM.  This is because the
arginal economic benefit of completely flattening valley-load is
ess than that for allocating the remaining PEV load at the indi-
ated hours. Furthermore, at 4 AM to 5 AM the constraint is still
ctive forcing the dip in load. Consequently, at 2 AM and 3 AM PEV

ig. 8. Effect of base case load forecast and the Charge Flexibility Constraint (CFC) on day
EVs with Level 1/Level 2 charger mixtures: (left) 70/30, (middle) 50/50 and (right)

charging is also slightly curtailed to allow for smoother ramping
once the CFC becomes active.

As the valley-load timing can significantly change the PEV allo-
cation (particularly with large market penetrations) the importance
of accurate load forecasting becomes clear. If forecast misses the
timing of the valley-load, then there can be a noticeable error in
the commitment of the generators and PEV allocation. Such circum-
stances would create additional system inefficiencies from over- or
under-commitment. This phenomenon is shown in Fig. 8.

This charging constraint can place severe limitations on any
valley-filling approach when the valley-load hours are centered on

5 AM.  However, due to a sharp decrease in maximum charging from
1 AM to 6 AM,  a valley-load shift of 1–3 h to the left can significantly
diminish the effect of the CFC.

-ahead PEV charging commitment in the load-valley for July 15th and August 14th.
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Fig. 9. Effect of Level 2 charger penetration on wholesale energy cost for three charging results: maximum charging at peak, at valley and typical charging. PEV penetrations:
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a)  5%, (b) 10%, (c) 20% and (d) 40%.

It is worth noting that Fig. 7 shows that there is a minute amount
f PEV charging at the end hour. This is a solver limitation. Because
his study only analyzed a daily load pattern rather than a longer
ime frame, the model attempts to smooth the ramping down at
he end hour without connecting to the next day. If the connection
s made, then there will be a slightly smoother valley-load, and
lightly less PEV allocation at the end hour.

.4. Impacts of adding Level 2 chargers

The normalized unregulated charging profile in Fig. 1 is con-

tructed with a 70/30 charger mixture. With higher Level 2 charger
enetration, the problem of PEV charging at peak load will be exac-
rbated, resulting in a quadratic increase in LMP  and cubic increase
n wholesale energy cost.
Fig. 9 shows wholesale energy market cost reductions from
intelligently charged PEVs with Level 2 charger penetrations at and
above 30%, with the same three charging categories as in Fig. 6. Fig. 9
shows that at low to medium PEV penetrations (5%-10%) increas-
ing the infrastructure investment from 30% to 50% Level 2 chargers
reduces wholesale electricity cost by 0.40% on average. However, at
medium to high PEV penetrations (20–40%), this investment only
reduces cost by 0.25% on average. Further investment to increase
the share of Level 2 chargers from 50% to 70% or from 50% to 100%
would on average reduce system cost less than or equal to 0.11% or
0.15%, respectively.
Overall, the system benefit is significantly reduced for more than
50% penetration of Level 2 chargers due to the decreased effect of
the CFC on PEV charging in the morning valley load hours. This
reduction in benefit is exacerbated by a decrease in the percent-
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ge of valley charging for higher PEV penetrations as illustrated in
ig. 5. Moreover, as more PEVs charge at peak- and shoulder-load
ours, the difference between the optimal charge profile and the
nregulated charge profile decreases. From the perspective of only
egulating PEV charging, the additional cost of investing in Level

 chargers above the 50/50 mixture may  outweigh the benefit in
educing system cost.

It is worth noting that in Fig. 9 the reduction in system cost
s relative to a fixed unregulated charging profile with a 70/30
harger mixture. This value, the lowest considered in this study,
as selected to provide a benchmark for the system benefit of

dding additional high power charging stations.

. Conclusions

As Plug-in Electric Vehicle (PEV) ownership grows, controlling
hen these vehicles charge becomes an important issue for energy
roviders. Perhaps the most well-known regulated charging policy

s the so-called valley-fill where vehicle charging takes place only
n the early morning when system demand is lowest.

Motivated to improve upon the valley-filling method, this study
onsiders PEV market penetrations of 5%, 10%, 20%, and 40% in
ew York State, participating in the New York Independent System
perator’s day-ahead and real-time energy markets. For 21 days

n June, July and August of 2006, vehicle scheduling decisions are
ade using a statistical Locational Marginal Price (LMP) and whole-

ale energy cost model that explicitly includes the dynamic cost of
enerator ramping in addition to the traditional steady-state oper-
tion model. This model creates a framework with two  competing
ost objectives.

This study also proposes a Charge Flexibility Constraint (CFC)
odeling commuter driving behavior and the investment in Level

 (1.44 kW)  and Level 2 (7.68 kW)  charging infrastructure. The CFC,
hich is independent of market modeling, severely restricts PEV

harging, particularly in the morning load valley hours. As a result,
 complete valley-filling in the New York Control Area cannot be
chieved for most charger mixtures. Using a Simulated Anneal-
ng optimization algorithm, the proposed intelligent PEV charging

ethod, which minimizes cost from both steady-state and ramping
perations, is shown to reduce wholesale energy cost 4–9% beyond
hat of the valley-fill scheme.

Adding more Level 2 chargers without regulating PEV charg-
ng will significantly increase LMP  and wholesale energy cost
ue to increased unregulated charging at peak load. The pro-
osed intelligent PEV charging method will lead to a noticeable
eduction in system cost if the penetration of Level 2 chargers is
ncreased from 70/30 to 50/50 (Level 1/Level 2) mixture. However,
he system benefit is drastically decreased for higher penetra-
ions of Level 2 chargers due to the diminished effect of CFC
n PEV charging in the morning. This trend is exacerbated by a
maller percentage of charging at valley load hours for high PEV
enetrations.
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